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1. POWER SPECTRA FOR THE HELICAL CERENKOV EFFECT AND HARMONIC
RADIATION ABOVE AND BELOW HELICAL CERENKOV THRESHOLD

The helical Cerenkov effect (HCE) arises from electrons moving in a medium on helical trajectories
o, under the influence of the uniform magnetic field that, for simplicity, is defined as B- 2B, with B
| denoting the magnitude of the magnetic field and 2 its direction (Soln 1992). The helical Cerenkov

radiation with angular frequency @ will occur if (Soln 1992)
n(w)p,(0) 2 1, ¢y

where B,(0) = v,(0) /c, with v,(0) denoting the paralle]l component of the electron velocity with respect
to B, Here and in what follows, B=v/c,B, =v,/c,B, =vV,/c with v, being the perpendicular
component of the electron velocity with respect to B and vV = vf + vf. One notices that v, is also the
velocity of the electron-guiding center. The power spectra for the HCE and for the harmonic radiation
below and above the helical Cerenkov threshold are, respectively:

2wv (0 2
P (@;0) = %)i {[(sineO)JO(go)}z + [(v l(0)/vz(0))J1(§0)] } (2a)
[
c0s8p = ——_; (2b)
n(o)B,(0)
elv (Ao
P(@;a) = — 2" {sin’0, J,2(8,)
c

+ (vl(a)/zvz(a))z [coszea ("aq.l(ga) +J, -l(ga))z + (Ja-..l(ga) - Ja—l(éa))z]
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= - y & = 1,40,

' n(0)B,(a) n(e)ep,(a) G0
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The notation is such that
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where, in general, R denotes the electron gyro-radius, M the mass of the electron, and Y(J) is the electron
relativistic factor. It is relations (2b), (3b), and (4b), of course, that kinematically define the HCE,
harmonic radiation below, and above the helical Cerenkov threshold, respectively. For the sake of
comparison, we also list the power spectrum of the ordinary Cerenkov effect (no magnetic field present;
see, for example Soln [1992D):

2

P(®;C) ¢ OV sin@ _: cosO 1 (6)
;C) = in®0,; = ,
c2 4 c n(w)ac

where v, is the electron velocity and 6, is the radiation angle.

2. NUMBER OF PHOTONS PER UNIT PATH LENGTH IN THE VISIBLE SPECTRUM

From now on, we shall assume that index of refraction n varies very slowly in the visible wavelength

interval of interest; that is, for all practical purposes, n is independent of ®.




We start with the expression for the number spectrum per unit path length

d*Np @) _ p(asl) = N(a:]) 7
dLd® hov, (1) o

where [ = 0, a, -b, and, by definition, / = C represents the ordinary Cerenkov effect when v, is replaced
by v,.. Next, the number of photons per unit path length that are emitted into angular frequency interval

dw and the wavelength interval d\A are given, respectively, as

d*Np(@;D) o
— _do-= ; = N@A;Dd\;
TR do = N(o;!)do (AsDadn (8a)
Sx.ny = P@A)D
N v (8b)

Because of |dw/dAh| = ®/A (radiation is observed in a vacuum), we also have this very important

relation,

N(o;Do = N DA. ©)

At this point, we introduce the "natural finite" wavelength and angular frequency intervals:

A
AL = hy = Ay = Qg Ay = /i*l%,xohly;__)ﬁ, (10a)

Wy, Oy = ——_—, (10b)

where A and @y are the center wavelength and center angular frequency, respectively. One can easily

see that these definitions are numerically very close to what one uses in experiments (Martin and Shaw




1993). Furthermore, one also has that A® = 2rc/AA. For latter references, we notice that to a good

approximation ﬁ_ = (e + 1)/(e - 1), which will be useful later. However, one can also introduce the

"infinitesimal" wavelength and angular frequency intervals:

oA

Ao (11a)

80 = . (11b)

It will be seen that for the ordinary and helical Cerenkov effects the calculated (dNrp/dL)’s for radiation
falling within either AA or SA are practically the same.

For the ordinary and HCE, one has from relations (8) that the total number of photons per unit path
length emitted within wavelength and angular frequency intervals AA or A® to be, respectively

A
dNr(Ay, AX; 1= 0,C .
r(o ) - [ Rour=0.00a, (122)
dL i
1
dNp(0g, A@; 1=0,6) ¢
dL _mfN(m, 1=0,C)do. (12b)
2

Of course, (12a) = (12b). Next we estimate the contributions from harmonics to dN/dL within A® or
A\ intervals. Since harmonics occur at sharp frequencies (wavelengths), it is sufficient to estimate them
for radiation that falls within infinitesimal 8o (SA). Of course, 8w (8)) is supposed to be within A® (AA).

Having said that, consistent with relations (11), we have that for any harmonic index /

dNy(®g, dw; 1)
dL

ANy (Ag, 831
—a

= N(Ag; DAy = = N(®g, 0. (13a,b)




With these preliminaries, we first deal with the ordinary Cerenkov effect. Consistent with
relations (6), (8), (10), and (12), we obtain

dNp (Mg, AN; C) . 1 1 ~ dNp (Mg, 84; C)

T :)iL = 2mosin® 6, [.rl - % = N(Ay, C)Ag = d c(;L ) (14a)
dN Am; C dN,(®,,00; C

T(mgL ©:0 | _E:isinz 0, (0, — @,) = N(0g,C)®, = 1 d"L ) )

As we see, expressions (14a) and (14b) are exactly in the forms of relations (13a) and (13b), respectively.

To address the HCE and harmonic radiation, we first rewrite the argument of the Bessel Functions

from (5) as

& = (my (DB, singy) 2HLE), 15)

In the visible spectrum, we have that typically ® =4 x 101, With (Mc/e) = 5.56 x 10712ST, we have
that § = (ny (D B, () sin ) 2 x 10*T/B is going to be very large for "moderate” magnetic fields, B <
100 T. Hence, we can utilize the asymptotic expressions for Bessel functions (Arfken 1985):

1

_[1 + (1) sinzx]. (16)
nx

8x>>412 - 1: Ji(x) =

Since in the HCE only /= 0,1 come, we are allowed to use the asymptotic expressions for Bessel
functions in form (16). With relations (2a), (7), (8), and (9), we obtain

N(w;1=0) = Neﬁ(a);l=0) + N, (®;1=0), (17a)

osc

~

N(A;1=0) = N (A;1=0) + N, (A;1=0); (17b)

osc




Np(@:1=0) = alrpof - ;], (18)
cno(nB,(0)

asinzgo[(nﬁzm))z - (nB,(0)) - 1]

N, (@;1=0) = . (18b)
cn&o(nBZ(O))
& 2 1e
Neﬁ'.osc (A;1=0) = “T; Neﬁ’,osc(m(;")'l'o)- (18c)

It is evident that generally |N,,.|<|N,;|. Furthermore, as A varies from A, through Aq to Ay N,

experiences rapid oscillations in the variable &g as such, its contribution in the integral (12b) is negligible.

Therefore, we obtain

dN JAA; =0 ~
T“"dL ), (gil=0)gIn(Ry/Ay)
- dNT (Ag,81;1=0)
= N 5 (hoil=0)2g = T A"dL , (19a)

VST (@, 50;1=0) (19)
dl‘ ’

= eﬁc((l)o;l=0)(l)0 =

where, of course, (19a) = (19b) term by term. Next, in relations (19), because of [N, |< |Neﬁ| , one may

write Neﬂ (I=0) + N,;. (I = 0) instead of just Neﬁ (I = 0) and still obtain a good estimate for dNy

est

(I = 0)/dL; this we then denote as dN; (I = 0)/dL.



Examples (19) suggest, then, that for harmonic radiation above and below the HCE threshold, rather
than going through tedious calculations, one may simply estimate the number of photons per unit length
emitted within Am or AA, respectively, as

ANE (g, A®;l=ay,~by)  dNp(@g,80;1=ay,~bg)
T \® - 0-"%) _ aVri% = 3>=9% = N(wg;l=ag,~by) Gy, (20a)

dN;St(M,AK;hao"bo) _ dNp(Ag,0M;l=ag,—bg)

— — = N (Agil=2g,~bg)Ag (20b)

where again (20a) = (20b) term by term and a, and by, are harmonic indices associated with the central

angular radiation frequency «, according to relations (3) and (4), respectively.

3. APPLICATIONS

On general grounds, it follows from relations (2) to (5) that as B becomes larger and/or | (/) becomes
smaller, the HCE will dominate over the harmonic radiation. In fact, for B , # 0, and B — 0, the HCE
will gradually disappear, while the radiation into harmonics will become more dominant. At B = 0, all
the harmonic radiation will sum up into the ordinary Cerenkov radiation, which, however, can also be
calculated directly (Soln 1992).

Let us go back to the nonmonoenergetic beam. Here, by definition, the estimated overall number of
photons per unit path length is the superposition of the emitted total number of HCE photons per unit path
length and the estimated total number of photons per unit path length into the harmonics above and below
the HCE threshold. We shall assume that as one goes from one electron to another in the beam that
B,(a) = B,(-b) = B,(0) = 0.3, where ! = 0,a,-b are indices associated with the HCE and harmonic
radiation below and above the HCE threshold, respectively. Their constancy is, of course, an average
value for B, across the beam; it is justified by the fact that B, does not enter into the definition of
radiation frequency. Hence, the nonmonoenergetic beam quality will be specified by B,(/) which
approximately varies between 0.92 and 0.94 with B,(0) = 0.934 corresponding to the HCE (the energies
of individual electrons are in the 2-3-MeV range). The helical motion of electrons is maintained through

silica acrogel as a medium (the index of refraction in the visible spectrum is # = 1.075) by the magnetic




field of B = 10 T. The radiation angular frequency in all three cases is simply the central angular
radiation frequency in the visible portion of the spectrum, @y = 3.77 X 10171, Specifically, using
relations (19), (20), (7), and (2) to (5), we have the following expressions for the number of photons per

unit path length for each case:

1 =0,B,(0) = 09340,cos6y = 1/(n B,(0)) = 0.9960,7(0) = 5.1541:

= 0.104 cm—l; 21
i (21a)

l = aO = 120’Bz(a()) = 09206, Coseao = COSOQ,Y(aO) =4

dN ;% (@, A®;1=ag)
dL

= 0205 cm™!; (21b)

1 = =by = =71, B,(-by) = 09393, cosB_, = cosBy, Y(~bo) = 6:
N7 (00, A®;1==by)

= 0.120 cm™!. 1
I (21c)

At the end of the L = 10-cm path length in the silica aerogel, the number of photons generated by an
electron in the radiation angular frequency interval Am with the central radiation angular frequency @ =
3.77 x 10Ps7! and at the central angle 6y are, respectively

Np(@g,A®;1=0) = 1.04, (22a)
Ny (@, A0;1=2g) = 2.05, (22b)
N7 (g, 80501==by) = 1.2, (22¢)

where the parameters correspond to relations (21a,b,c).




We can take a simple average over [ = 0, a,,~by of relations (21a,b,c) yielding

t
dN;S (wgy,Aw;average)

= 0.143 cm™ L, (23)
dL

Comparing this expression with (21a), we see that the harmonic emission actually enhanced the helical

Cerenkov radiation. Finally, from relation (23), we have
L=10cm, B=10T: N7 (0 Aw;average) = 1.43, (24)

so that an electron beam with, say, 108 electrons in cm? will generate about 1.4 x 108 photons in cm? at

the end of a 10-cm path length in the silica aerogel. This can be observed experimentally.

Recently, a greét deal of progress has been made in achieving magnets whose fields would reach
100 T (Boebinger, Passner, and Bevk 1995). With B = 100 T in relations (21a,b,c), the harmonic numbers
and the number of photons per unit path length become, respectively: 0, 1.039 cm™; 12, 2.166 cm™1; and
~7, 0.408 cm™!. One notices that only for the HCE, [ = 0, the number of photons per unit path length

scales linearly with B.

These examples show explicitly that the HCE with a nonmonoenergetic electron beam could be a

vehicle for detecting a magnetic field in the hostile electromagnetic medium.
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